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Abstract— Visual brain-computer interface (BCI) systems 

have made tremendous process in recent years. It has been 

demonstrated to perform well in spelling words. However, 

different from spelling English words in one-dimension 

sequences, Chinese characters are often written in a 

two-dimensional structure. Previous studies had never 

investigated how to use BCI to ‘write’ but not ‘spell’ Chinese 

characters. This study developed an innovative BCI-controlled 

robot for writing Chinese characters. The BCI system contained 

108 commands displayed in a 9*12 array. A pixel-based writing 

method was proposed to map the starting point and ending 

point of each stroke of Chinese characters to the array. 

Connecting the starting and ending points for each stroke can 

make up any Chinese character. The large command set was 

encoded by the hybrid P300 and SSVEP features efficiently, in 

which each output needed only 1s of EEG data. The task-related 

component analysis was used to decode the combined features. 

Five subjects participated in this study and achieved an average 

accuracy of 87.23% and a maximal accuracy of 100%. The 

corresponding information transfer rate was 56.85 bits/min and 

71.10 bits/min, respectively. The BCI-controlled robotic arm 

could write a Chinese character ‘福’ with 16 strokes within 5.7 

seconds for the best subject. The demo video can be found at 

https://www.youtube.com/watch?v=A1w-e2dBGl0. The study 

results demonstrated that the proposed BCI-controlled robot is 

efficient for writing ideogram (e.g. Chinese characters) and 

phonogram (e.g. English letter), leading to broad prospects for 

real-world applications of BCIs. 

I. INTRODUCTION 

Brain-computer interfaces (BCIs) provide an alternative 
approach for people to directly communicate with the outward 
environment, which is independent or less dependent of the 
muscles and peripheral nerves [1-5]. Among all BCI 
paradigms, the P300 speller [6] and the steady-state visual 
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evoked potential (SSVEP)-based BCI speller [7] are the two 
most popular vision-based BCI systems. 

Recently, spelling with vision-based BCIs has made 
tremendous progress and gained increasing attention from 
researchers. Townsend and Platsko developed an 
asynchronous paradigm for a P300 speller, which boosted the 
information transfer rate (ITR) beyond 100 bits/min [8]. 
Nakanishi et al. first applied a task-related component analysis 
(TRCA) method to detect targets in a 40-target SSVEP-based 
BCI, which achieved an unprecedented ITR up to 376.58 
bits/min [9].  However, most of these studies were focused on 
spelling English alphanumeric characters and no study 
investigated how to use a BCI to ‘write’ as opposed to ‘spell’ 
Chinese characters. In 2010, Minett et al. applied the 
sub-character component method to a row/column (RC) P300 
paradigm to spell Chinese character, which reached a peak 
ITR of 14.5 bits/min [10]. Later, Minett et al. use the 
shape-based method to encode more than 7000 Chinese 
characters and achieved an input speed of one character per 

107s [11]. In 2016， Yu et al. developed the Hanyu 

Pinyin-based method and achieved an averaged offline 
accuracy of 92.6% with a mean ITR of 39.2 bits/min [12]. 
Although there are many methods to encode Chinese 
characters, all of these studies are "spell" rather than really 
"write" Chinese characters.   

One reason of this problem is that Chinese characters have 
a large number and complex structure with two-dimensional 
planar topology. The other reason is the limitation of BCI 
technologies (e.g. instruction set, the consuming time for 
outputting a command). To overcome the internal obstacles of 
Chinese characters, we first proposed a pixel-based writing 
method that mapped the starting point and ending point of 
each stroke of Chinese characters to BCI commands (also 
known as pixels). And we further proposed a hybrid 
P300-SSVEP BCI-controlled robot system with an 
ever-largest instruction set of 108 commands, which could 
write arbitrary Chinese characters. 

II. MATERIALS AND METHODS 

A. Subjects 

Five healthy volunteers (two females and three males, 

22-25 years of age; all right-handed) with normal or corrected 

to normal vision participated in both offline and online 

experiments. The experimental procedure was approved by 

the Institutional Review Board at Tianjin University. All of 

the subjects were fully informed of the experiment 

procedures and signed an informed consent agreement, in 

accordance with the Declaration of Helsinki, and including a 
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statement that they have known all possible consequences of 

the study. 

B. System Description 

The proposed BCI-controlled robot system comprises two 
main subsystems: the hybrid P300-SSVEP BCI system and 
the robot control system. The robot arm was used to realize the 
control application of the hybrid BCI system in real 
environment. Fig. 1 shows the overall control schematic of the 
BCI-controlled robot system. The hybrid P300-SSVEP BCI 
system consisted of raw signal recording, pre-processing and 
classification method. The hybrid P300-SSVEP BCI 
communicated with the robot control system via TCP/IP 
communication protocol. The output results of the hybrid BCI 
system will first be presented on the screen in the form of 
visual feedback. Only when the results are correct can the 
robot be moved within 4 seconds, otherwise the participants 
can cancel the command by gritting their teeth within 4 
seconds. In order to widen the applicability of the system, for 
those who cannot implement gritting their teeth, the cancel 
command can be replaced by other behaviors, such as 
continuous blinking. 

 
Figure 1. Block diagram of the proposed BCI-controlled robot system. 

C. Pixel-based writing method 

To overcome the challenges of writing Chinese characters, 
we proposed a pixel-based writing method. As we all know, 
the basic element of Chinese characters is strokes. Strokes 
with different distributions make up different Chinese 
characters. Based on this, the stimulation interface with 108 
commands of the hybrid P300-SSVEP BCI system could be 
seen as a writing panel. So the main problem was converted 
into how to write strokes on the stimulation interface. The core 
of the method was that the starting point and ending point of 
each stroke of Chinese characters were mapped to a 
stimulation interface with 108 targets (also called pixels). 
Connecting the starting point and ending point makes up each 
stroke of a Chinese character. 

 

Figure 2. Illustration of Chinese character “福”. a) The two-dimensional 

pixels of “福” on the stimulation interface; b) The target pixels of “福”. The 

red pixels indicated that the participant needed to select the pixel once as the 

target, and the pixel with a red filled background indicated that the participant 

needed to select it twice. 

To further illustrate this method, the Chinese character “福” 

was explained as an example. The starting and ending points 
of each stroke were regarded as the target pixels. The BCI 

system wrote “ 福 ” in the following sequence: 

10-14-9-18-18-74-49-88-50-54-19-29-23-56-23-31-31-64-56
-64-58-97-58-68-68-107-91-101-60-99-91-107 (see Fig. 2). It 
can be seen that the writing method used the odd-numbered 
endpoints of the sequence as the starting point of the stroke, 
and the even-numbered endpoints as the ending point of the 
stroke. Connecting the starting point and the ending point 

made up all the strokes of the Chinese character “福”. 

D. A Hybrid P300-SSVEP BCI Paradigm 

This study proposed a hybrid BCI paradigm that embeds 
the steady-state visual stimuli into the oddball paradigm. A 
9×12 matrix showed 108 numbers on a white background (see 
Figure 3a). They were further divided into 12 small 3×3 
matrices. Each small matrix was an independent P300 
sub-speller whose characters were individually highlighted by 
a gray square in a random and ergodic sequence. Each 
stimulation pixel subtended 1.49 degrees of visual angle in the 
vertical direction and 1.78 degrees in the horizontal direction. 
The stimulus duration for each pixel was 200ms and the 
inter-stimulus interval (ISI) was -100ms. All sub-spellers were 
triggered at the same time. Therefore, it needed only 1 second 
to run a complete cycle for all the pixels, which was defined as 
a ‘round’ in this study. Different from the traditional P300 
paradigm, the stimulation pixel changed its grayscale in a 
sinusoidal mode whose frequency and initial phase were 
different for each sub-speller, as shown in Figures 3b, 3c, and 
3d. 

 

Figure 3. The hybrid P300-SSVEP paradigm. (a) The layout of the 108 pixels 

on the screen was divided into 12 sub-spellers by the red dash lines. (b) The 

selected frequency and initial phase of stimulation squares were displayed for 

each sub-speller. (c) Stimulation process for sub-speller 1. The red dotted 

lines with arrows indicate specific time points. (d) Stimulation process for 

sub-speller 8. 

To separate the SSVEP frequency band from the P300 
frequency band, the 12 flickering frequencies were selected 
above 12 Hz, from 12.4 to 14.6 Hz with a step of 0.2 Hz. The 
initial phases were optimized by a search of phase interval 
(from 0 to 2π with a step of 0.05π) on a public SSVEP dataset 
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using a simulation method [13]. The visual stimuli were 
presented on a 27-inch liquid-crystal display (LCD) monitor 
whose resolution was 1,920×1,080 pixels and the refresh rate 
was 120 Hz. The stimulation program was developed under 
MATLAB (MathWorks, Inc.) using the Psychophysics 
Toolbox Version 3. 

E. Robot Control System 

The UR10 (Universal Robots, Inc.), a 6-axis collaborative 
robot, was adopted in this study. The absolute maximum 
distance that the UR10 could reach was 1300mm from the 
center of the base. It’s worth noting that the UR10 can be 
directly controlled by the hybrid BCI system in real time.  

The position of the robot is specified by the 6D coordinates 
(X, Y, Z, RX, RY, RZ). For the calibrated operating system, X 
represents the height from the console. Y and Z represent the 
vertical and horizontal axes of the console, respectively. RX, 
RY, RZ represent the rotation angles of X, Y, Z axes, 
respectively. 

F. Experimental Procedure 

During the experiment, the participants were seated in 
front of a monitor screen at a distance of 60 cm. They were 
asked to pay overt attention to a specified pixel beforehand 
and silently count the number of times the target pixel was 
intensified.  

In the offline experiment, the pixel specified for selection 
would be indicated by a red triangle underneath with 0.79 
degrees of visual angle for 0.7 seconds. Then the visual 
stimulus ran for five successive rounds for all the pixels, 
which last 5 seconds, i.e. the subject chose the same target five 
times. Each round contained one target stimulus and 8 
non-target stimuli. All subjects were required to choose all 
108 pixels as targets on the screen sequentially, which were 
divided into three blocks (36 pixels in each block). They 
would have a break of several minutes between two successive 
blocks. The offline experiment lasted about 13 minutes for 
each subject.  The offline data were used to analyze the system 
and determine the parameters of the online experiment, so the 
robot control is not included. 

In the online experiments, all participants were asked to 

write a Chinese character “福” with 16 strokes (i.e. 32 starting 

points and ending points) using the proposed BCI-controlled 
robot system at least 32 times. It is worth noting that the 
moving time of robot control system was 4s after receiving a 
command from the hybrid BCI system. Only one round was 
used for the online spelling test. 

G. EEG Recording and Pre-processing 

EEG signals were recorded by a Neuroscan Synamps2 
system with eight electrodes placed at Fz, Cz, Pz, PO7, PO8, 
O1, O2, and Oz according to the International 10/20 system. 
The reference electrode was put on the left mastoid and the 
ground electrode was placed on the prefrontal lobe. The 
recorded signals were bandpass filtered at 0.1–200 Hz and the 
notch filter was set to 50 Hz, digitized at 1000 Hz and then 
stored on a computer.  

In the recognition process, there were two sequential steps: 
(1) recognizing the sub-speller containing the target pixel and 

then (2) recognizing the target pixel within the identified 
sub-speller, as shown in Fig. 4. 

Based on our work [14], we used both the P300 and 
SSVEP features for target recognition. The 8-channel EEG 
signals (Fz, Cz, Pz, PO7, PO8, O1, O2, and Oz) were filtered 
by a filter bank (including eight Chebyshev Type I filters) into 
[X Hz, 92 Hz] (X=1, 11, 22, 34, 46, 58, 70 and 82), and then 
down-sampled to 250 Hz. The hybrid features were extracted 
from 50ms to 450ms. The outputs indicated the predicted 
sub-speller or target pixel. 

 
Figure 4. The total flow diagram of signal processing. 

H. Ensemble Task-Related Component Analysis (TRCA) 

The Ensemble TRCA has been proved the most powerful 
recognition algorithm for SSVEP classification [9]. TRCA is 
an algorithm that maximizes the covariance of task-related 
components between trials. In the process of calculation, the 
best projection direction was obtained by defining restriction 
and using Lagrange multiplier method. The filter bank method 
could be combined to extract more features and improve the 
classification performance. Finally, the correlation coefficient 
between the projection of the test data and averaged individual 
template was calculated to predict the target pixel. For more 
details, please refer to [9]. 

I. Coordinate Mapping 

The stimulation interface is a 2-D coordinate system 
(length* width: m*n), while the robot control system is a 6-D 
coordinate system. Therefore, after the output results of the 
hybrid BCI system, the following steps are required to convert 
the coordinate systems. After the operating platform of the 
robot control system (length*width: M*N) was calibrated, the 
position coordinates (x, y) on the stimulation interface 
correspond to the 6D coordinates of the robot system as 

( , * , * , , , ),
1 1

y x
X Y N Z M RX RY RZ

n m
 

 

where X, RX, RY, RZ 

are fixed constants after the robot system was calibrated. 

J. Performance Evaluation 

This study uses classification accuracy and ITR as 
evaluation indicators, which have been widely adopted in BCI 
research. The ITR can be calculated as [15]: 

ITR = {𝑙𝑜𝑔2N + P𝑙𝑜𝑔2P + (1 − P)𝑙𝑜𝑔2((1 − P)/(N − 1))} × (60/T)  

  (1) 

where N is the number of instruction sets, P is the 
classification accuracy and T is the consuming time for each 
selection. In offline experiments, the consuming time was 1.7s, 
2.7s, 3.7s, 4.7s, and 5.7s for 1 to 5 rounds, respectively. The 
extra 4s of robot communication and movement time were 
required in the online experiments. 

III. RESULTS AND DISCUSSION 

A. Offline BCI Performance  

This section reported the accuracies and ITRs of the offline 
experiments. A leave-one-out cross-validation, which meant 
the data of 1 target was used as the test set and the data of the 
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other 107 targets were used as the training set in each of the 
108 validation steps, was adopted to ensure the robustness of 
the classification accuracy. For Fig. 5, it’s obvious that the 
overall target accuracies depended on the accuracies of both 
sub-speller classification and pixel classification within a 
sub-speller. The pixel within a sub-speller has the lowest 
accuracy in Fig. 5a. However, the ITRs of the pixel 
classification within a sub-speller were higher than the other 
two ITRs in Fig. 5b. The reason for this is the large increase in 
the number of commands has led to an increase in the ITRs. 
As shown in Fig. 5, the average accuracy of target recognition 
had a steadily rising trend against the number of rounds, which 
increased from 87.04 % at 1 round to 96.66 % at 5 rounds. Fig. 
5b shows the corresponding simulated online ITRs, which 
include another 0.7s of the cue time for each selection (but not 
including 4s of robot communication and movement time). 
The results showed the average ITR reached a maximum of 
189.27 bits/min at 1 round. Therefore, only one round was 
used for the following online test. 

 

Figure 5. The accuracies and the corresponding ITRs of sub-speller 

recognition, pixel recognition within sub-spellers, and overall target 
recognition across subjects are plotted against the number of rounds, which 

are achieved by using the ensemble TRCA and hybrid EEG features. The 
error bars indicated standard errors. 

B. Online BCI Performance 

Table 1 lists the results of the online tests for the five 

subjects. All subjects were asked to write a Chinese character 

“福”. The robot control system simply reproduced the results 

shown on the stimulation interface in the online experiments, 

so the target cue time was kept consistent with an offline cue 

time of 0.7s. For the writing of each stroke of Chinese 

character, a total of 5.7s is required (cue time: 0.7s; flicker 

time: 1s; robot communication and movement time: 4s). 

Subject 1 achieved the highest ITR of 71.10 bits/min with an 

accuracy of 100%. Four subjects achieved higher than 80% 

accuracy and higher than 50 bits/min of ITRs. The average 

accuracy was 87.23% and the average ITR was 56.85 bits/min 

across all subjects. These results demonstrated the feasibility 

and effectiveness of the proposed BCI-controlled robot 

system with a large instruction set and high pixel resolution. 

TABLE 1. Results of Online Experiments 

Subject 
Consuming 

Time (s) 

Selections 

(Correct 

   /Total) 

ACC. 

(%) 

ITR 

(bits/min) 

S1 5.7 (0.7+1+4) 32/32 100 71.10 

S2 5.7 (0.7+1+4) 32/37 86.49 55.50 

S3 5.7 (0.7+1+4) 32/35 91.43 60.58 

S4 5.7 (0.7+1+4) 32/39 82.05 51.22 

S5 5.7 (0.7+1+4) 32/42 76.19 45.87 

Max 

Min 

Mean±STD 

---- 

---- 

---- 

---- 

---- 

---- 

100 

     76.19 

87.23±0.09 

71.10 

    45.87 

56.85±9.63 

IV. CONCLUSION 

This study developed a BCI-controlled robot system to 
“write” instead of “spell” Chinese characters. This work 
proposed for the first time a pixel-based writing method with 
the largest BCI instruction set for writing Chinese characters 
using a hybrid BCI. The average accuracy of the system 
reached 87.23% in the online tests, corresponding to an 
average ITR of 56.85 bits/min. The study results demonstrated 
that the proposed BCI system is a promising approach for 
writing ideogram (e.g. Chinese characters) and phonogram 
(e.g. English letter), which might lead to widespread 
real-world applications. 
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