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Abstract— Visual brain-computer interface (BCI) systems
have made tremendous process in recent years. It has been
demonstrated to perform well in spelling words. However,
different from spelling English words in one-dimension
sequences, Chinese characters are often written in a
two-dimensional structure. Previous studies had never
investigated how to use BCI to ‘write’ but not ‘spell’ Chinese
characters. This study developed an innovative BCI-controlled
robot for writing Chinese characters. The BCI system contained
108 commands displayed in a 9*12 array. A pixel-based writing
method was proposed to map the starting point and ending
point of each stroke of Chinese characters to the array.
Connecting the starting and ending points for each stroke can
make up any Chinese character. The large command set was
encoded by the hybrid P300 and SSVEP features efficiently, in
which each output needed only 1s of EEG data. The task-related
component analysis was used to decode the combined features.
Five subjects participated in this study and achieved an average
accuracy of 87.23% and a maximal accuracy of 100%. The
corresponding information transfer rate was 56.85 bits/min and
71.10 bits/min, respectively. The BCI-controlled robotic arm
could write a Chinese character ‘38’ with 16 strokes within 5.7
seconds for the best subject. The demo video can be found at
https://www.youtube.com/watch?v=A1w-e2dBGl0. The study
results demonstrated that the proposed BCI-controlled robot is
efficient for writing ideogram (e.g. Chinese characters) and
phonogram (e.g. English letter), leading to broad prospects for
real-world applications of BCIs.

I. INTRODUCTION

Brain-computer interfaces (BCls) provide an alternative
approach for people to directly communicate with the outward
environment, which is independent or less dependent of the
muscles and peripheral nerves [1-5]. Among all BCI
paradigms, the P300 speller [6] and the steady-state visual
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evoked potential (SSVEP)-based BCI speller [7] are the two
most popular vision-based BCI systems.

Recently, spelling with vision-based BCIs has made
tremendous progress and gained increasing attention from
researchers. Townsend and Platsko developed an
asynchronous paradigm for a P300 speller, which boosted the
information transfer rate (ITR) beyond 100 bits/min [8].
Nakanishi et al. first applied a task-related component analysis
(TRCA) method to detect targets in a 40-target SSVEP-based
BCI, which achieved an unprecedented ITR up to 376.58
bits/min [9]. However, most of these studies were focused on
spelling English alphanumeric characters and no study
investigated how to use a BCI to ‘write’ as opposed to ‘spell’
Chinese characters. In 2010, Minett et al. applied the
sub-character component method to a row/column (RC) P300
paradigm to spell Chinese character, which reached a peak
ITR of 14.5 bits/min [10]. Later, Minett et al. use the
shape-based method to encode more than 7000 Chinese
characters and achieved an input speed of one character per
107s [11]. In 2016, Yu et al. developed the Hanyu
Pinyin-based method and achieved an averaged offline
accuracy of 92.6% with a mean ITR of 39.2 bits/min [12].
Although there are many methods to encode Chinese
characters, all of these studies are "spell" rather than really
"write" Chinese characters.

One reason of this problem is that Chinese characters have
a large number and complex structure with two-dimensional
planar topology. The other reason is the limitation of BCI
technologies (e.g. instruction set, the consuming time for
outputting a command). To overcome the internal obstacles of
Chinese characters, we first proposed a pixel-based writing
method that mapped the starting point and ending point of
each stroke of Chinese characters to BCI commands (also
known as pixels). And we further proposed a hybrid
P300-SSVEP BCl-controlled robot system with an
ever-largest instruction set of 108 commands, which could
write arbitrary Chinese characters.

II. MATERIALS AND METHODS

A. Subjects

Five healthy volunteers (two females and three males,
22-25 years of age; all right-handed) with normal or corrected
to normal vision participated in both offline and online
experiments. The experimental procedure was approved by
the Institutional Review Board at Tianjin University. All of
the subjects were fully informed of the experiment
procedures and signed an informed consent agreement, in
accordance with the Declaration of Helsinki, and including a
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statement that they have known all possible consequences of
the study.

B. System Description

The proposed BCI-controlled robot system comprises two
main subsystems: the hybrid P300-SSVEP BCI system and
the robot control system. The robot arm was used to realize the
control application of the hybrid BCI system in real
environment. Fig. 1 shows the overall control schematic of the
BClI-controlled robot system. The hybrid P300-SSVEP BCI
system consisted of raw signal recording, pre-processing and
classification method. The hybrid P300-SSVEP BCI
communicated with the robot control system via TCP/IP
communication protocol. The output results of the hybrid BCI
system will first be presented on the screen in the form of
visual feedback. Only when the results are correct can the
robot be moved within 4 seconds, otherwise the participants
can cancel the command by gritting their teeth within 4
seconds. In order to widen the applicability of the system, for
those who cannot implement gritting their teeth, the cancel
command can be replaced by other behaviors, such as
continuous blinking.
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Figure 1. Block diagram of the proposed BCI-controlled robot system.

C. Pixel-based writing method

To overcome the challenges of writing Chinese characters,
we proposed a pixel-based writing method. As we all know,
the basic element of Chinese characters is strokes. Strokes
with different distributions make up different Chinese
characters. Based on this, the stimulation interface with 108
commands of the hybrid P300-SSVEP BCI system could be
seen as a writing panel. So the main problem was converted
into how to write strokes on the stimulation interface. The core
of the method was that the starting point and ending point of
each stroke of Chinese characters were mapped to a
stimulation interface with 108 targets (also called pixels).
Connecting the starting point and ending point makes up each
stroke of a Chinese character.

a) b)

Figure 2. Illustration of Chinese character “3g”. a) The two-dimensional
pixels of “48” on the stimulation interface; b) The target pixels of “4&”. The
red pixels indicated that the participant needed to select the pixel once as the

target, and the pixel with a red filled background indicated that the participant
needed to select it twice.

To further illustrate this method, the Chinese character “#”
was explained as an example. The starting and ending points
of each stroke were regarded as the target pixels. The BCI
system wrote “ # » in the following sequence:
10-14-9-18-18-74-49-88-50-54-19-29-23-56-23-31-31-64-56
-64-58-97-58-68-68-107-91-101-60-99-91-107 (see Fig. 2). It
can be seen that the writing method used the odd-numbered
endpoints of the sequence as the starting point of the stroke,
and the even-numbered endpoints as the ending point of the
stroke. Connecting the starting point and the ending point

=41

made up all the strokes of the Chinese character “4#”.

D. A Hybrid P300-SSVEP BCI Paradigm

This study proposed a hybrid BCI paradigm that embeds
the steady-state visual stimuli into the oddball paradigm. A
9x12 matrix showed 108 numbers on a white background (see
Figure 3a). They were further divided into 12 small 3x3
matrices. Each small matrix was an independent P300
sub-speller whose characters were individually highlighted by
a gray square in a random and ergodic sequence. Each
stimulation pixel subtended 1.49 degrees of visual angle in the
vertical direction and 1.78 degrees in the horizontal direction.
The stimulus duration for each pixel was 200ms and the
inter-stimulus interval (ISI) was -100ms. All sub-spellers were
triggered at the same time. Therefore, it needed only 1 second
to run a complete cycle for all the pixels, which was defined as
a ‘round’ in this study. Different from the traditional P300
paradigm, the stimulation pixel changed its grayscale in a
sinusoidal mode whose frequency and initial phase were
different for each sub-speller, as shown in Figures 3b, 3¢, and
3d.
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Figure 3. The hybrid P300-SSVEP paradigm. (a) The layout of the 108 pixels
on the screen was divided into 12 sub-spellers by the red dash lines. (b) The
selected frequency and initial phase of stimulation squares were displayed for
each sub-speller. (c¢) Stimulation process for sub-speller 1. The red dotted
lines with arrows indicate specific time points. (d) Stimulation process for
sub-speller 8.

To separate the SSVEP frequency band from the P300
frequency band, the 12 flickering frequencies were selected
above 12 Hz, from 12.4 to 14.6 Hz with a step of 0.2 Hz. The
initial phases were optimized by a search of phase interval
(from 0 to 27 with a step of 0.05m) on a public SSVEP dataset

4742

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on May 23,2023 at 19:14:04 UTC from IEEE Xplore. Restrictions apply.



using a simulation method [13]. The visual stimuli were
presented on a 27-inch liquid-crystal display (LCD) monitor
whose resolution was 1,920x1,080 pixels and the refresh rate
was 120 Hz. The stimulation program was developed under
MATLAB (MathWorks, Inc.) using the Psychophysics
Toolbox Version 3.

E. Robot Control System

The UR10 (Universal Robots, Inc.), a 6-axis collaborative
robot, was adopted in this study. The absolute maximum
distance that the UR10 could reach was 1300mm from the
center of the base. It’s worth noting that the UR10 can be
directly controlled by the hybrid BCI system in real time.

The position of the robot is specified by the 6D coordinates
(X,Y,Z,RX,RY, RZ). For the calibrated operating system, X
represents the height from the console. Y and Z represent the
vertical and horizontal axes of the console, respectively. RX,
RY, RZ represent the rotation angles of X, Y, Z axes,
respectively.

F. Experimental Procedure

During the experiment, the participants were seated in
front of a monitor screen at a distance of 60 cm. They were
asked to pay overt attention to a specified pixel beforehand
and silently count the number of times the target pixel was
intensified.

In the offline experiment, the pixel specified for selection
would be indicated by a red triangle underneath with 0.79
degrees of visual angle for 0.7 seconds. Then the visual
stimulus ran for five successive rounds for all the pixels,
which last 5 seconds, i.e. the subject chose the same target five
times. Each round contained one target stimulus and 8
non-target stimuli. All subjects were required to choose all
108 pixels as targets on the screen sequentially, which were
divided into three blocks (36 pixels in each block). They
would have a break of several minutes between two successive
blocks. The offline experiment lasted about 13 minutes for
each subject. The offline data were used to analyze the system
and determine the parameters of the online experiment, so the
robot control is not included.

In the online experiments, all participants were asked to
write a Chinese character “4#” with 16 strokes (i.e. 32 starting
points and ending points) using the proposed BCI-controlled
robot system at least 32 times. It is worth noting that the
moving time of robot control system was 4s after receiving a
command from the hybrid BCI system. Only one round was
used for the online spelling test.

G. EEG Recording and Pre-processing

EEG signals were recorded by a Neuroscan Synamps2
system with eight electrodes placed at Fz, Cz, Pz, PO7, POS,
01, 02, and Oz according to the International 10/20 system.
The reference electrode was put on the left mastoid and the
ground electrode was placed on the prefrontal lobe. The
recorded signals were bandpass filtered at 0.1-200 Hz and the
notch filter was set to 50 Hz, digitized at 1000 Hz and then
stored on a computer.

In the recognition process, there were two sequential steps:
(1) recognizing the sub-speller containing the target pixel and

then (2) recognizing the target pixel within the identified
sub-speller, as shown in Fig. 4.

Based on our work [14], we used both the P300 and
SSVEP features for target recognition. The 8-channel EEG
signals (Fz, Cz, Pz, PO7, POS, O1, 02, and Oz) were filtered
by a filter bank (including eight Chebyshev Type I filters) into
[X Hz, 92 Hz] (X=1, 11, 22, 34, 46, 58, 70 and 82), and then
down-sampled to 250 Hz. The hybrid features were extracted
from 50ms to 450ms. The outputs indicated the predicted
sub-speller or target pixel.
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Figure 4. The total flow diagram of signal processing.

H. Ensemble Task-Related Component Analysis (TRCA)

The Ensemble TRCA has been proved the most powerful
recognition algorithm for SSVEP classification [9]. TRCA is
an algorithm that maximizes the covariance of task-related
components between trials. In the process of calculation, the
best projection direction was obtained by defining restriction
and using Lagrange multiplier method. The filter bank method
could be combined to extract more features and improve the
classification performance. Finally, the correlation coefficient
between the projection of the test data and averaged individual
template was calculated to predict the target pixel. For more
details, please refer to [9].

1. Coordinate Mapping

The stimulation interface is a 2-D coordinate system
(length* width: m*n), while the robot control system is a 6-D
coordinate system. Therefore, after the output results of the
hybrid BCI system, the following steps are required to convert
the coordinate systems. After the operating platform of the
robot control system (length*width: M*N) was calibrated, the
position coordinates (x, y) on the stimulation interface
correspond to the 6D coordinates of the robot system as
(X, ¥ =2 xN, 7+~ a1 rx,RY, RZ), Where X, RX, RY, RZ

n— m—
are fixed constants after the robot system was calibrated.

J. Performance Evaluation

This study uses classification accuracy and ITR as
evaluation indicators, which have been widely adopted in BCI
research. The ITR can be calculated as [15]:

ITR = {log,N + Plog,P + (1 — P)log,((1 — P)/(N — 1))} X (60/T)
(1)

where N is the number of instruction sets, P is the
classification accuracy and T is the consuming time for each
selection. In offline experiments, the consuming time was 1.7s,
2.7s, 3.7s, 4.7s, and 5.7s for 1 to 5 rounds, respectively. The
extra 4s of robot communication and movement time were
required in the online experiments.

III. RESULTS AND DISCUSSION

A. Offline BCI Performance

This section reported the accuracies and ITRs of the offline
experiments. A leave-one-out cross-validation, which meant
the data of 1 target was used as the test set and the data of the
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other 107 targets were used as the training set in each of the
108 validation steps, was adopted to ensure the robustness of
the classification accuracy. For Fig. 5, it’s obvious that the
overall target accuracies depended on the accuracies of both
sub-speller classification and pixel classification within a
sub-speller. The pixel within a sub-speller has the lowest
accuracy in Fig. 5a. However, the ITRs of the pixel
classification within a sub-speller were higher than the other
two ITRs in Fig. 5b. The reason for this is the large increase in
the number of commands has led to an increase in the ITRs.
As shown in Fig. 5, the average accuracy of target recognition
had a steadily rising trend against the number of rounds, which
increased from 87.04 % at 1 round to 96.66 % at 5 rounds. Fig.
5b shows the corresponding simulated online ITRs, which
include another 0.7s of the cue time for each selection (but not
including 4s of robot communication and movement time).
The results showed the average ITR reached a maximum of
189.27 bits/min at 1 round. Therefore, only one round was
used for the following online test.
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Figure 5. The accuracies and the corresponding ITRs of sub-speller
recognition, pixel recognition within sub-spellers, and overall target
recognition across subjects are plotted against the number of rounds, which
are achieved by using the ensemble TRCA and hybrid EEG features. The
error bars indicated standard errors.

B. Online BCI Performance

Table 1 lists the results of the online tests for the five
subjects. All subjects were asked to write a Chinese character

—

“%@”. The robot control system simply reproduced the results
shown on the stimulation interface in the online experiments,
so the target cue time was kept consistent with an offline cue
time of 0.7s. For the writing of each stroke of Chinese
character, a total of 5.7s is required (cue time: 0.7s; flicker
time: 1s; robot communication and movement time: 4s).
Subject 1 achieved the highest ITR of 71.10 bits/min with an
accuracy of 100%. Four subjects achieved higher than 80%
accuracy and higher than 50 bits/min of ITRs. The average
accuracy was 87.23% and the average ITR was 56.85 bits/min
across all subjects. These results demonstrated the feasibility
and effectiveness of the proposed BClI-controlled robot
system with a large instruction set and high pixel resolution.

TABLE 1. Results of Online Experiments

S3 5.7 (0.7+1+4)  32/35 91.43 60.58

S4 5.7 (0.7+1+4)  32/39 82.05 51.22

S5 5.7 (0.7+1+4)  32/42 76.19 45.87

Max - - 100 71.10

Min - - 76.19 45.87
Mean+STD -— -— 87.23+0.09 56.85+9.63

. Consuming Selections ACC. ITR
Subject Time(s)  (Correet (%) (bits/min)
/Total)

S1 57(07+1+4) 3232 100 71.10
S2 5.7(0.7+1+4) 3237 86.49 55.50

IV. CONCLUSION

This study developed a BClI-controlled robot system to
“write” instead of “spell” Chinese characters. This work
proposed for the first time a pixel-based writing method with
the largest BCI instruction set for writing Chinese characters
using a hybrid BCI. The average accuracy of the system
reached 87.23% in the online tests, corresponding to an
average ITR of 56.85 bits/min. The study results demonstrated
that the proposed BCI system is a promising approach for
writing ideogram (e.g. Chinese characters) and phonogram
(e.g. English letter), which might lead to widespread
real-world applications.
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